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Abstract—Power system states are not accurately known ahead
of real time and are subject to natural variability, which leads
to uncertainty in the system. Sources of uncertainty are amongst
others load, renewable energy sources and contingencies. An
aggregate measure for system’s uncertainty is determined in
order to have a single quantified value of the uncertainty level in
the system. This allows to compare performance of power system
reliability management according to various reliability criteria
at different uncertainty levels in a transparent manner. A case
study for a 5 node test system illustrates the use of the aggregate
uncertainty measure and the impact of different uncertainty
levels on short term reliability management of transmission
system operators according to three reliability criteria. Results of
the case study illustrate that probabilistic reliability management
can lead to significant improvements in performance in terms of
total system cost and curtailment of non-flexible load compared
to reliability management based on deterministic N-0 and N-1
criteria, especially at high uncertainty levels in heavily loaded
system conditions.

Index Terms—Power system operation, power system reliabil-
ity, reliability criterion, reliability management, uncertainty.

I. INTRODUCTION

Uncertainty can be classified in stochastic uncertainty and
epistemic/knowledge-based uncertainty. The main difference
between them is that knowledge-based uncertainty can be
reduced in contrast to stochastic uncertainty, which is by
definition irreducible. Three major groups of uncertainty can
be defined [1]:

• Model uncertainty: The applied model is a simplification
of reality.

• Completeness uncertainty: Not all contributions to the
risk are/can be addressed. For instance, it is infeasible
to assess all possible system states in large systems.

• Variables’ uncertainty: Variables in the model might be
not accurately known, subject to natural variability and
stochastic in nature, such as net load and wind generation.

The aim of this paper is to assess the impact of stochastic
variables’ uncertainty on performance of short term power sys-
tem reliability management of a transmission system operator
(TSO) according to various reliability criteria.
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Power systems are one of the most critical infrastructures
for modern society and require an adequate reliability level.
Nowadays, power system reliability is managed according to
a deterministic N-1 criterion, which has various shortcomings
regarding the management of uncertainty, such as the fact that
it considers only N-1 contingencies with equal probability and
severity and no forecast errors for load and wind power gen-
eration. Probabilistic reliability criteria consider uncertainties
in a more convenient way and can overcome shortcomings of
deterministic criteria.

The preventive decision stage of the short term decision
making process of a TSO is prone to uncertainty about real
time system states, such as real time realizations of load
and generation of renewable energy sources and possible
contingencies, i.e. unexpected failures or outages of a system
component, such as a generator, transmission line, circuit
breaker, switch, or other electrical element [2]. Different
reliability criteria cause operators to treat this uncertainty in
different ways. Performance of reliability criteria depends on
the uncertainty level in the system, which is determined by
the accuracy of load and Renewable Energy Source (RES)
forecasts and possible contingencies in the system, and how
well the system is prepared for the uncertainties, which results
from reliability management. In order to give incentives to
power system stakeholders to change their manner of reliabil-
ity management towards a more cost effective approach, it is
crucial to quantify changes in socio-economic and reliability
performance of using more complex and more computationally
intensive probabilistic reliability approaches [3], [4].

Studies have illustrated the impact of load uncertainty on
system reliability indices and bus reliability indices [5]–[7].
Reliability management according to various reliability criteria
is not considered in these studies. Uncertainty is mostly
defined in terms of correlation matrices and standard devia-
tions in literature, assuming normal distributions of uncertain
variables. In order to facilitate the analysis and comparison
of cases with similar orientation of the probability pattern of
the uncertain variables, an overall measure of uncertainty is
proposed quantifying system’s uncertainty level in a single
value. Section II describes the aggregate measure of uncer-
tainty. Section III gives an overview of the methodology used
to assess the impact of uncertainty on performance of various
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reliability criteria in short term reliability management. In
section IV, the methodology is applied to a 5 node test system.
Section V discusses results of the case study, while section VI
summarizes the key take-aways.

II. MEASURE OF AGGREGATE SYSTEM UNCERTAINTY

Uncertain variables in power systems are for instance wind
generation, load and contingencies. Moreover, reliability data
such as failure and repair rates of system components might
be not precise due to the small number of events occurring.
Uncertainty is often dealt with by assigning probability dis-
tributions to the variables. Next to the uncertainty of those
variables, values are correlated in time and in space. Spatial
correlation exists not only between variables of the same
type, for example between the output of wind generators at
different locations [8], but also between values of variables of
different types such as for instance between wind generation
and load [9]. Uncertainty and correlation of different variables
are typically expressed in a covariance matrix. The covariance
matrix captures the orientation and size of the uncertainty
cloud [10]. If the uncertainty cloud is a multi-variate normal
distribution, the covariance matrix is the parameter of variance
of the distribution and both upward and downward deviations
of the forecast values are possible. However, in reality, if
a wind generator hits its maximal generation capacity, only
downward deviations are possible, resulting in non-symmetric
distributions. This is not considered in the presented study.

In order to easily compare results in terms of uncertainty, an
aggregate measure of uncertainty, representing the dispersion
of all variables together in a single number, is determined.
Two overall measures of dispersion are total variation and
generalized variance [11]. Total variation (TV) is defined as
the sum of all variances along the different components in the
system or the trace of the covariance matrix cov.

TV = trace(cov) (1)

A problem with total variation as a measure of dispersion
is that it does not take into account any information about
the correlation among variables in contrast to generalized
variance [11]. Generalized variance (GV) equals the product of
eigenvalues or the determinant of the covariance matrix [12].

GV = det(cov) =
∏

k

λk (2)

The generalized variance can be considered as representative
for the total uncertainty in the system. Generalized variance
as aggregate uncertainty measure can be explained based on
principal component analysis (PCA) of the covariance matrix
of system variables, such as load and renewable generation.
Principal component analysis explains the variance-covariance
structure of a set of variables using linear combinations of the
variables. It consists of making an eigenvalue decomposition
of the covariance matrix. Eigenvectors of the covariance
matrix represent the principal components of the system,
which are independent directions with maximum variability.
The variance along a particular direction is given by the
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Fig. 1. Two dimensional illustration of the proportionality between the
aggregate measure of uncertainty based on generalized variance and the
surface area of the uncertainty cloud

eigenvalue λk corresponding to the eigenvector of the direction
under analysis [12]. The distributions they are representing
are independent. The eigenvalues of the covariance matrix
are proportional to the half-length of the principal axes of
the higher dimensional ellipsoid approximating the uncertainty
cloud of uncertain system variables. As GV is the product of
the eigenvalues of the covariance matrix, it is proportional
to the product of the half lengths of the higher dimensional
ellipsoid. Therefore, the generalized variance is proportional
to the higher dimensional volume of the ellipsoid that can be
imagined to represent the uncertainty cloud. This is graphically
illustrated in Fig. 1 for a two dimensional case.

Generalized variance does not contain any information on
the orientation of the patterns [12]. Therefore, generalized
variance is easier to interpret when the samples being com-
pared have nearly the same orientation. In the considered
analysis, the orientation of the uncertainty cloud, representing
uncertainty in RES and load, is similar for different cases.

The generalized variance is dependent upon the scale of the
variables in the sample [13]. All uncertain variables forming
the uncertainty cloud have equal units in this analysis. In
order to be able to compare simulations in an explicit way,
uncertainty U = n

√
GV is used, which corresponds to the

length of the side of a n-dimensional cube of which the volume
equals the generalized variance.

III. METHODOLOGY

In order to assess the impact of uncertainty on the perfor-
mance of short term reliability management, the TSO decision
making process according to various reliability criteria needs
to be simulated for different uncertainty levels. An overview
of the simulation procedure is given in Fig. 2. The procedure
consists of four parts:

• Generation of a sample of system states to assess, repre-
senting the uncertainty in the system

• Simulation of short term reliability management
• Evaluation of reliability decision related trajectory and

final system states in the sample
• Post-processing of the results

The coming subsections elaborate more on each of the parts.
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Fig. 2. Overview of the simulation procedure

A. Simulation of TSO’s short term reliability management

TSO’s short term decision making process consists of
operational planning (OP) and real time operation (RT). The
simulation of the TSO decision making process of short term
reliability management is indicated by the dotted boxes in
Fig 2. Initially, preventive control actions for a particular ex-
pected state are determined taking into account the reliability
criterion. This is shown in part A of the simulation of short
term reliability management in Fig 2. Constraints and credible
real time system states considered in the operational planning
decision stage differ between reliability criteria, resulting in
different preventive control actions that are selected.

Real time system states differ from credible system states
considered in the preventive decision stage due to uncertainties
in the system. The real time decision making process is
simulated resulting in corrective actions. Preventive actions
are taken into account in the simulation of corrective control.
Applying corrective actions in real time will result in a final
system state. This process is shown in part B of the simulation
of short term reliability management in Fig. 2.

B. Sample generation

In theory, all possible system states should be evaluated in
order to make an assessment of the performance of reliability
management according to a particular reliability criterion that
completely captures the impact of uncertainty. However, this
is not doable in practice, especially not in large systems. A
sampling procedure determines system states to evaluate in the
corrective control stage of short term reliability management,
as indicated by the dashed box in Fig. 2. System states in
the sample represent possible realizations of uncertain system

variables, such as load and wind power generation. Latin
Hypercube Sampling (LHS) [14] is used to generate samples
representing different uncertainty levels. LHS requires that
variables are independent [15]. Principal component analysis
(PCA) is used in order to generate independent, normal
distributions approximating the multi-dimensional, correlated
probability structure of the uncertainty cloud. 1000 real time
system states are generated per sample related to a particular
set of forecast values. All system states in the sample have
equal probability of occurring as the probability structure is
taken into account in the sampling procedure.

Uncertainty due to contingencies is included using an an-
alytical approach. Component reliability data, such as failure
and repair rates, are used to determine the probability of a
particular contingency. For each real time system state of
load and RES generation in the sample, the most probable
contingencies up to a particular cumulative probability are
simulated. Outcomes according to different contingencies are
weighted using the probability of the contingencies.

C. Performance evaluation

Performance of power system reliability criteria is expressed
in terms of expected total system cost (TC). Expected total
system cost per real time system state s determined by a
particular load and RES power realization consists of the cost
of actions and the interruption cost and is defined as:

TC = Cprev +
C∑

c=1

pc · [Ccorr,c +
L∑

j=1

Ccurt,j,c] (3)

with Cprev the cost of preventive actions, Ccorr,c the cost of
corrective actions in contingency case c, Ccurt,j,c the cost of
load curtailment at load point j in contingency case c and pc
the probability of contingency c. In this way, both the final
system state and the reliability decision related trajectory are
evaluated, which is required to make a complete evaluation
of the performance of reliability management according to a
particular reliability criterion. Expected total system cost is
evaluated for all system states in the sample. Overall expected
total cost can be calculated as:

ETC = ps · TC (4)

with ps the probability of system state s in the sample. ps is the
same for all system states in the sample in the used sampling
procedure and equals 1

N with N the number of system states
in the sample.

D. Post-processing

Post-processing focusses on two different kinds of informa-
tion. On the one hand a trimmed data set is used omitting the
6.5% highest and lowest outcomes in terms of TC in order
to omit outliers. The trimmed data set is analysed using the
trimmed mean combined with the interquartile distance of the
trimmed data set in order to analyse the spread of the data. On
the other hand, the number of cases in which non-flexible load
is curtailed is investigated. These cases are denoted as Load
Curtailment Cases (LCCs) in the remainder of the paper.
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As only samples are investigated in the analysis, significance
tests are used that give evidence whether an observed effect
in the sample reflects an effect that is present in the popula-
tion. Moreover, they are useful to compare different samples
[16]. Due to outliers and the asymmetric probability density
function of the data, traditional t-tests cannot be used as the
assumptions of these tests are not satisfied. Non-parametric
permutation tests are used. The normality condition does not
need to be satisfied for permutation tests and they are robust
in the sense that outcomes are still accurate even when the
two population distributions under investigation have slightly
different standard deviations [16]. Permutation tests use re-
sample methods without replacement to generate samples of
the performance indicators that represent the null-hypothesis.
In order to determine the significance of differences in mean
total system cost for different reliability criteria at a particular
uncertainty level, a significance test for paired data is required,
because the same system states are evaluated for different
reliability criteria at a particular uncertainty level. Paired and
unpaired tests can be distinguished based on the difference in
permutation resampling method of the sample of result data.
The hypotheses are:

H0 : ¯TCcrit1 − ¯TCcrit2 = 0

H1 : ¯TCcrit1 − ¯TCcrit2 > 0

with ¯TCcriti the mean total system cost according to a
particular reliability criterion i. An α-value of 0.05 is used.

IV. CASE STUDY

The impact of uncertainty in power systems on performance
of short term reliability management based on different re-
liability criteria is analysed for a case study on a 5 node
test system. Short term reliability management based on three
different reliability criteria is simulated for various levels of
aggregate uncertainty.

A. Test system

The 5 node test system based on the Roy Billinton Relia-
bility test system (RBTS) is shown in Fig. 3 [17], [18]. Three

1 2

3 4

5

Fig. 3. The five node test system

types of uncertainty are taken into account: contingencies,
wind generation and load. Components are considered to have
constant failure rates and repair times. The impact of imprecise
reliability data is not considered in this case study.

Information about the generators and average spatial load
distribution in the test system is summarized in table I. Wind

TABLE I
OVERVIEW OF GENERATORS AND AVERAGE SPATIAL LOAD DISTRIBUTION

IN THE TEST SYSTEM

Node Generation
capacity [MW]

Type Node Average
Load share [%]

1 40 Conventional 1 0
1 40 Conventional 2 12.12
1 50 Wind 3 51.52
2 40 Conventional 4 24.24
2 20 Conventional 5 12.12
2 100 Wind
2 5 Conventional
2 5 Conventional

generators represent 50 % of total generation capacity in the
system, however, the output of those wind generators is not
certain. Different uncertainty levels are investigated, leading
to different generalized variances and uncertainties U for two
load levels, as summarized in table II. 20% of total system
load is available for curtailment at a cost, while the remainder
of the load can only be curtailed in emergency cases.

TABLE II
OVERVIEW OF CONSIDERED COMBINATIONS OF LOAD AND WIND

GENERATION FORECASTS AND CONSIDERED UNCERTAINTY LEVELS

Case
no.

Total load Total wind U1 U2 U3

forecast [MW] forecast [MW] [MW] [MW] [MW]

C1 135 110 1.2 2.2 3.2
C2 175 110 1.7 3.1 4.6

(Cross-)correlation between wind generation and load at
different nodes in the system is taken into account. The
correlation matrix used in this study, which is the normalized
version of the covariance matrix, is shown in (5) [8], [9].

wind1 wind2 load2 load3 load4 load5

Corr =




1 0.95 0.047 0.064 0.03 0.025
0.95 1 0.07 0.04 0.03 0.01
0.047 0.07 1 0.2 0.35 0.15
0.064 0.04 0.2 1 0.22 0.3
0.03 0.03 0.35 0.22 1 0.3
0.025 0.01 0.15 0.3 0.3 1




(5)

B. Reliability management

The focus of the paper is on TSOs’ short term reliability
management, consisting of operational planning and real time
operation. Generation redispatch is available as preventive
action in the operational planning stage. Operational planning
decision making also takes into account available actions in
real time. Considered real time corrective actions are genera-
tion redispatch and load curtailment [4]. Reliability is managed
according to three reliability criteria:

• N-0 criterion: No load curtailment or violation of op-
erational limits allowed in the N-0 system state for the
forecast value of load and wind generation.

• N-1 criterion: No load curtailment or violation of op-
erational limits allowed in all contingency cases up to
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N-1 system states for the forecast value of load and wind
generation. All contingencies are assumed to be equally
probable. Only branch outages are considered.

• Probabilistic reliability criterion: The objective is to mini-
mize expected total system cost. Load uncertainty is taken
into account in probabilistic reliability management ahead
of real time using load scenarios. These load scenarios
are derived from a discretized normal distribution with the
load forecast as mean µ and a standard deviation σ. A
similar approach is used to take into account uncertainty
of renewable generation. The load and RES scenarios
range from µ − 3σ up to µ + 3σ, with equal spacing
between the scenarios. Moreover, contingency cases up
to a cumulative probability of 99% are considered. All
system states are taken into account with their respective
probability of occurring [4]. For the 5 node test system,
5 wind generation scenarios and 7 load scenarios are
considered in the operational planning stage ahead of real
time, together with the contingency cases. This results in
280 considered system states for the 5 node test system.
The standard deviations of the distributions representing
possible load and wind generation realizations given a
particular forecast equal 4% and 6% respectively.

The TSO decision making process is simulated using a DC
SCOPF based on MATPOWER’s extensible OPF formulation
[4], [19]. Performance of reliability management is evaluated
based on the same system states for the three reliability
criteria. Contingency cases up to a cumulative probability of
99.99% are assessed for all system states generated by the
Latin Hypercube Sampling technique as discussed in section
III-B for the cases summarized in table II.

V. RESULTS

Probability distributions of total system cost TC obtained
from the samples are not normal, but right-skewed with
outliers. Table III gives the expected total system cost ETC
expressed relatively to the expected total system cost if the N-
0 reliability criterion is applied in the high (C2) and low load
(C1) case for the three uncertainty levels specified in table
II. The permutation significance test shows that differences
in mean total system cost between the reliability criteria are
significant for the three uncertainty levels. The application
of a N-1 reliability criterion reduces expected total system
cost, especially at high uncertainty levels. Cost savings are
even larger if a probabilistic reliability criterion is applied,
especially if the system is more heavily loaded. The focus
in the remainder of this section will be on the results of the
heavily loaded case C2.

Fig. 4 gives the number of load curtailment cases (LCCs)
that occur in case C2 if different reliability criteria are applied,
expressed relatively to the number of load curtailment cases if
the N-0 criterion is applied in the case with uncertainty level
U3. The number of load curtailment cases can be reduced if
a N-1 or probabilistic reliability criterion is used, with the
largest difference at the highest uncertainty level. N-1 and
probabilistic reliability criteria lead to a similar number of

TABLE III
EXPECTED TOTAL SYSTEM COST ETC EXPRESSED RELATIVELY TO THE

ETC IF THE N-0 CRITERION IS APPLIED IN CASE C1 AND C2 OF TABLE II

Case Criterion U1 U2 U3

C1
N-0 100 100 100
N-1 99.8 99.8 97.2
Probabilistic 97.1 96.0 93.6

C2
N-0 100 100 100
N-1 95.0 91.9 74.9
Probabilistic 92.4 89.8 72.9
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Fig. 4. Relative number and severity of load curtailment cases (LCCs) in the
heavily loaded case C2 for three reliability criteria for the three uncertainty
levels specified in table II.

load curtailment cases, however, the probabilistic reliability
criterion results in a lower amount of load curtailed in part of
the cases, as illustrated by the stacks in Fig. 4, which represent
the number of LCCs with an amount of load curtailed (LC)
within the specified range expressed as a percentage of total
load.

Fig. 5 gives the 6.5% trimmed mean total system cost TC
and the 25% and 75% percentiles of the trimmed data for
case C2 for different levels of aggregate uncertainty. Results
are expressed relatively to the maximal trimmed mean total
system cost, i.e. if the N-0 reliability criterion is applied at
the highest uncertainty level. The trimmed mean total system
cost is lower with a N-1 criterion compared to a N-0 criterion
at each uncertainty level. The probabilistic reliability criterion
leads to even lower total system costs. Also the interquartile
distance is smaller if the probabilistic reliability criterion is
applied. The 25%-percentile of the trimmed total system cost
sample is nearly constant as a function of the uncertainty
level for all three reliability criteria, but the trimmed mean
and 75%-percentile increase, leading to an increased spread
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Fig. 5. Evolution of the mean and spread of the 6.5% trimmed data samples of total system cost TC as a function of the uncertainty level U for the three
reliability criteria under investigation in the heavily loaded 5 node test system (C2). Values of TC are expressed relatively to the maximal trimmed mean
TC, i.e. if the N-0 criterion is applied.

of total system cost at higher uncertainty levels.

VI. CONCLUSION

Probabilistic reliability criteria for short term power system
reliability management consider uncertainty related to load
and RES forecasts and contingencies in a more convenient
way compared to deterministic reliability criteria. A single,
aggregate measure of uncertainty based on generalized vari-
ance allows to make a transparent comparison of performance
of power system reliability management according to various
reliability criteria in terms of level of uncertainty in the
system. A case study on a 5 node test system shows potential
improvements in terms of socio-economic performance and
curtailment of non-flexible load if a probabilistic reliability
criterion is applied. Expected total system cost is lower and
also the spread on total system cost is reduced if a probabilistic
criterion is used. The effect is even more pronounced in
heavily loaded cases with high uncertainty levels.

The proposed aggregate uncertainty measure can be used in
a sequential assessment in future work, which allows to assess
the impact of temporal effects. Moreover, the impact of spatial
and temporal correlation and imprecise reliability data on the
performance of reliability management can be assessed.
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